similar to that obtained by the sequential in situ reaction of MoCl₅ with NO and Ph₃P.

Oxidation of the triphenylphosphine in the above reactions could be effected either by the NO or the NOCl generated in the MoCl₅-NO reaction.^{7,8}

The apparent presence of $MoOCl_3(Ph_3PO)_2$ in the reaction products was surprising since we had found that MoOCl₃ is readily reduced by NO. To illuminate this point, we examined the reaction of $MoOCl_3(Ph_3PO)_2$ with NO in C_6H_5Cl . After a reaction period of 5 hr at room temperature, 67% of the complex was recovered. Under the same conditions, MoOCl₃ is essentially completely consumed. Apparently, some slow reaction does occur since not all the MoOCl₃-(Ph₃PO)₂ was recovered. Indeed, a yellow solid was isolated in a small amount from the reaction. This material was not identified; however, the ir spectrum clearly indicated the absence of nitrosyl groups. This result indicates that the Ph₃PO ligands stabilize the MoOCl₃ toward reduction by NO and that the limited extent of reaction that does occur follows a different course. This would also explain why a higher proportion of $MoCl_2(NO)_2(Ph_3PO)_2$ (derived from $MoCl_2(NO)_2$) was present in the mixture obtained when the Ph_3P was added after the NO.

At present, we do not know the identity of the species exhibiting the N-O stretching vibration at 1698 cm^{-1} ; it is possibly due to a molybdenum-mononitrosyl derivative. The complex $[MoCl_3(NO)]_n$, prepared by the reaction of $[MoCl_2(CO)_4]_2$ with NOCl, has been reported⁹ but no details concerning its properties were given.

The Ph₃P complexes obtained from either MoCl₅- or MoOCl₃-derived $[MoCl_2(NO)_2]_n$ show two strong N-O stretching vibrations at 1789 and 1672 cm⁻¹ in CHCl₃ solution. This suggests that the NO groups are mutually cis. Cotton and Johnson reported values for v_{NO} of 1790 and 1670 cm^{-1} (in CH₂Cl₂) for the Ph₃P complex derived from $[MoCl_2(NO)_2]_n$ prepared by the reaction of $Mo(CO)_6$ with NOC1.⁵ Our Ph₃P complexes exhibit splitting of the v_{NO} bands in Nujol with absorptions appearing at 1790, 1775, and 1670, 1660 cm⁻¹. In the far-ir spectra of the Ph_3P complexes we find only two absorptions in the 200-400-cm⁻¹ region at 288 and 306 cm^{-1} . These we attribute to the Mo-Cl stretching vibrations of cis chloro ligands. Two isomers, 1 and 2, are possible which possess cis NO and cis Cl groups.

To assist in differentiating between 1 and 2 we prepared the diphenylmethylphosphine complex $MoCl_2(NO)_2$. $(Ph_2PCH_3)_2$. This complex shows two strong v_{NO} bands at 1788 and 1677 cm⁻¹ (in CHCl₃) and two ν_{Mo-Cl} vibrations at 281 and 303 cm⁻¹. The similarity of the ν_{NO} and ν_{Mo-Cl} frequencies between the Ph₃P and Ph₂PCH₃ complexes suggests that the NO and Cl ligands are in similar environments in the two complexes. The 60-MHz ¹H nmr spectrum

(7) M. Halmann and L. Kugel, J. Chem. Soc., 3272 (1962). (8) D. Klamann and P. Weyerstahl, Angew. Chem., 75, 574 (1963).

(9) B. F. G. Johnson, K. H. Al-Obaidi, and J. A. McCleverty, J. Chem. Soc. A, 1668 (1969).

of the Ph₂PCH₃ complex contains a well-defined 1:2:1 triplet in the methyl proton region (δ 2.26, 4-Hz spacings). As shown by Jenkins and Shaw, this pattern is characteristic of mutually trans methylphosphine ligands.¹⁰ The combined ir and nmr data strongly suggest a cis Cl, cis NO, trans phosphine geometry (1) for the Ph_2PCH_3 and, because of the similarity in its ir spectrum, the Ph₃P complex.¹¹

Registry No. MoCl₂(NO)₂(Ph₃PO)₂, 14095-87-5; MoCl₅, 10241-05-1; NO, 10102-43-9; MoCl₂(NO)₂, 30731-17-0; $MoCl_2(NO)_2(Ph_3P)_2$, 37402-68-9; $MoCl_2(NO)_2(C_5H_5N)_2$, 14024-95-4; MoOCl₃, 13814-74-9; Ph₃P, 603-35-0.

(10) J. M. Jenkins and B. L. Shaw, Proc. Chem. Soc., London, 279 (1963).

(11) Note Added in Proof. A single-crystal X-ray diffraction study has established the cis-dichloro, cis-dinitrosyl, trans-bisphosphine configuration for MoCl₂(NO)₂(Ph₃P)₂ [M. O. Visscher and K. G. Caulton, J. Amer. Chem. Soc., 94, 5923 (1972)].

> Contribution from the Department of Chemistry, University of Western Ontario, London, Ontario, Canada

Ab Initio Calculations for the Boron-Nitrogen Analog of Cyclobutadiene¹

N. Colin Baird

Received May 26, 1972

In a previous publication, ab initio calculations were reported for iminoborane (1), the boron-nitrogen analog of acetylene.² Dimerization of 1 can yield several interesting molecules, one of which-1,3,2,3-diazadiboretidine (2)-would correspond to the boron-nitrogen analog of the antiaromatic hydrocarbon cyclobutadiene $3.^3$ To determine the similari-

ties and differences in properties between the "inorganic" and "organic" cyclobutadiene systems, ab initio STO-NG calculations have been performed for 2.4,5

In contrast to cyclobutadiene itself, the D_{2h} planar form of 2 in which all four ring bond lengths are equal is not subject to Jahn-Teller distortion in the lowest singlet state and may well correspond to the optimum geometry. In fact, the D_{2h} structure may well be more stable than the "alternating" C_{2h} geometry for all type 4 ring systems in which the elec-

(1) Research supported by the National Research Council of Canada.

(2) N. C. Baird and R. K. Datta, Inorg. Chem., 11, 17 (1972). (3) Other possible dimers would be the B-N analog of tetrahe-

The B-H and N-H bond lengths, as well as the STO ex-(5) potents for the σ and π atomic orbitals, used in the calculations were taken from ref 1. Only planar structures in which all NBH angles are equal (and similarly for the BNH angles) were considered.

⁽³⁾ Other possible dimers would be the B-N analog of tetrane-drane and a planar four-membered ring with one B-B, one N-N, and two B-N bonds. The latter could also be considered an analog of 3.
(4) (a) W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys., 51, 2657 (1969). (b) Ab initio calculations for a variety of B-N systems, including 2 have recently been reported: D. R. Armstrong and D. T. Clark, Theor. Chim. Acta, 24, 307 (1972).
(6) The D. W. and N. W. band hearths, a would be the STO experiment.

tronegativity of X is greater than that of Y to the extent that each X formally contributes two π electrons and each Y no π electrons, to the conjugated network. In particular, the highest occupied (lowest unoccupied) π MO is completely localized on the X(Y) π atomic orbitals and has energy equivalent to an X(Y) nonbonding orbital in such systems. When X = Y (as in cyclobutadiene), an exact degeneracy occurs between these two MO's, resulting in an "alternating" geometry for the lowest singlet state and in a small energy gap between the lowest singlet and triplet state.⁶

To establish the optimum geometry for 2, STO-2G calculations were performed first for a square ring; the optimum B-N distance found of 1.47 Å is 0.07 Å longer than predicted for BH₂NH₂ itself and 0.04 Å longer than for an N-B-N chain.⁷ Subsequent calculations for the rectangular form of 2 and using an average B-N separation of 1.47 Å indicate that the D_{2h} form is stable relative to such displacements, in agreement with the arguments advanced above. Finally, calculations (again with a B-N distance of 1.47 Å) indicate that the optimum NBN angle for the D_{2h} form of 2 is 93°. These structural predictions agree reasonably well with Xray diffraction results⁸ for the hexakis(trimethylsilyl)2,4diamino derivative of 2, in which the four almost-equal ring B-N distances are 1.45 ± 0.02 Å, and the ring NBN angle is 98°

Although the $(BHNH)_2$ ring is expected to be destabilized by both strain and antiaromaticity effects, the optimum energy calculated⁹ for 2 is some 74.3 kcal/mol more bonding than for two iminoborane monomers, in good agreement with the value of 63.3 kcal/mol calculated by Armstrong and Clark.^{4b} In contrast, *ab initio* calculations predict that $(BH_2NH_2)_2$ is only ~ 3 kcal/mol more stable than two amino-borane monomers.¹⁰ It is evident from these results that both B-N coordinate covalent and π bonds are weak relative to the "normal" σ bonds formed between trivalent boron and nitrogen atoms.

To test the Huckel method prediction that the antiaromaticity of type 4 four-membered rings decreases as the electronegativity difference between X and Y increases,¹¹ SCF wavefunctions and energies were redetermined for 2 and for BH_2NH_2 using a basis set which does not include a $2p_{\pi}$ orbital on boron (and thus localizes the π electrons on the nitrogen atoms). In contrast to cyclobutadiene, for which the

(6) Ab initio calculations for various geometries and states of cyclobutadiene have been reported: R. J. Buenker and S. D. Peyerimhoff, J. Chem. Phys., 48, 354 (1968).

(7) N. C. Baird, to be submitted for publication. Calculations for BH₂NH₂ indicate that bond lengths calculated at the STO-2G level are ~ 0.01 Å longer than those predicted by STO-3G expansions. See also N. C. Baird, Chem. Phys. Lett., 6, 61 (1970).

(8) V. H. Hess, Acta Crystallogr., Sect. B, 25, 2342 (1969).
(9) All energy values quoted henceforth are based upon STO-3G calculations using the optimum calculated geometry for the ring $(R_{\rm BN} = 1.47$ Å, NBN angle = 98°). The total energy for 2 is -158.6912 au.

(10) (a) D. R. Armstrong and P. G. Perkins, J. Chem. Soc. A, 2748 (1970). (b) Although the errors in the total bonding energies for both 1 and 2 are expected to be rather large due to correlation effects, the calculated dimerization energy should be of the correct order of magnitude since both 1 and 2 are closed-shell species and since the total number of bonds does not change in the dimerization process.

(11) See for example the calculations in (a) N. C. Baird and M. A. Whitehead, Can. J. Chem., 45, 2059 (1967); (b) D. P. Craig, J. Chem. Soc., 997 (1959).

delocalization energy is predicted by semiempirical calculations to be zero or even negative, 11,12 the π -bonding energy calculated for 2 is predicted to be 11 kcal/mol more stabilizing than for two isolated boron-nitrogen π bonds. Thus, the residual antiaromaticity for 2 must be slight.

A crude estimate of 53 kcal/mol for the σ -bond strain energy in 2 was deduced by comparison of the total bonding energy in the (BHNH)₂ ring (calculated with the π electrons localized on N) with the effective energies for four B-N, two B-H, and two N-H σ bonds; the latter were obtained from total energies for BH_2NH_2 , $NH_2B(H)NH_2$, and $BH_2N(H)BH_2$ (again calculated with localized π electrons) by assuming that each type of σ -bond energy remains the same in the different molecules.¹³ While the rather high strain energy calculated for 2 gains some support from the value of 55.4 kcal/mol (deduced from semiempirical calculations and the experimental heat of formation) for the cyclobutadiene derivative biphenylene,¹⁴ previous experience with the STO-3G method indicates that strain energies are usually overestimated.¹⁵

As expected from the orbital energy arguments above, the highest occupied MO for 2 is localized on the nitrogen $2p_{\pi}$ orbitals and has a rather low stabilization (predicted ionization potential 8.1 eV, compared to 11.1 eV for BH₂NH₂).¹⁶ The vertical excitation energy to the lowest triplet state T_1 is also relatively low at 119 kcal/mol (compare to 157 for BH_2NH_2) since the transition involved is from a nonbinding N to a nonbonding B π orbital. The predicted S₀-T₁ split for square cyclobutadiene is only ~ 15 kcal/mol.⁶

Registry No. (BHNH)₂, 18464-81-8.

(12) According to the Huckel method including overlap integrals S, the total π -bonding energy for two ethylenes is $4\beta/(1+S)$ whereas that for D_{4h} cyclobutadiene is only $4\beta/(1+2S)$.

(13) This assumption is supported by the calculated overlap populations⁷ which do not vary significantly from one chain to another.

(14) See C. de Llano, Ph.D. Thesis, University of Texas, Austin, Texas, 1968, p 134. The strain energy quoted by de Llano has been corrected in the present study on the basis of the revised heat of vaporization reported by E. Morawetz, J. Chem. Thermodynamics, 4, 455 (1972).

(15) W. J. Hehre, R. Ditchfield, L. Radom, and J. A. Pople, J. Amer. Chem. Soc., 92, 4796 (1970).
 (16) Armstrong and Clark^{4b} predicted an ionization potential

of 10.9 eV for 2.

Contribution from the Department of Chemistry, Howard University, Washington, D. C. 20001

Kinetics of Copper Incorporation into Porphyrins in Acetic Acid

Jeffrey James and Peter Hambright*

Received May 26, 1972

Acetic acid has been used as a solvent to study the kinetics of incorporation of Cu, Fe, Co, Ni, and Mn species into porphyrin molecules.¹⁻³ In two separate studies, the rate laws for copper acetate insertion were found to be first order in porphyrin (either hematoporphyrin¹ or tetrapyridylpor-

(1) D. J. Kingham and D. A. Brisbin, Inorg. Chem., 9, 2034 (1970).

(2) D. A. Brisbin and R. J. Balahura, Can. J. Chem., 46, 3431 (19è́8)́.

(3) E. I. Choi and E. B. Fleischer, Inorg. Chem., 2, 94 (1963).